Characterization of Two Different Ca^{2+} Uptake and IP_3 -sensitive Ca^{2+} Release Mechanisms in Microsomal Ca^{2+} Pools of Rat Pancreatic Acinar Cells

T. Ozawa,* F. Thévenod, I. Schulz

II. Physiologisches Institut der Universität des Saarlandes 66421 Homburg (Saar), Federal Republic of Germany

Received: 29 July 1994/Revised: 11 November 1994

Abstract. We have examined the effect of the Ca^{2+} (Mg²⁺)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent ⁴⁵Ca²⁺ uptake into IP₃-sensitive Ca²⁺ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca²⁺ uptake was inhibited by TG up to 10 nm (apparent $K_i \approx 4.2$ nm, Ca^{2+} pool I). An additional increase of inhibition up to 85-90% of total Ca²⁺ uptake could be achieved at 15 to 20 nm of TG (apparent $K_i \approx 12.1$ nM, Ca^{2+} pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent $K_i \approx 10 \ \mu M$). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca^{2+} uptake. About 30-40% of total Ca^{2+} uptake was inhibited by 100 μ M of vanadate (apparent K_i \approx 18 μ M, Ca²⁺ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mM (apparent $K_i \approx 300 \,\mu\text{M}$) or by TG up to 10 nm (Ca²⁺ pool I). The amount of IP₃-induced Ca²⁺ release was constant at $\approx 25\%$ over a wide range of Ca²⁺ filling. About 10– 20% remained unreleasable by IP₃. Reduction of IP₃releasable Ca²⁺ in the presence of inhibitors showed similar dose-response curves as Ca^{2+} uptake (apparent K_i \approx 3.0 nM for IP₃-induced Ca²⁺ release as compared to ≈ 4.2 nM for Ca^{2+} uptake at TG up to 10 nM) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca^{2+} pool I. At TG concentrations >10 nm which blocked Ca²⁺ pool II the apparent K_i values were ≈ 11.3 and ≈ 12.1 nm, respectively. For inhibition by vanadate up to 100 μ M the apparent K_i values were \approx 18 μ M for

Ca²⁺ uptake and $\approx 7 \,\mu\text{M}$ for Ca²⁺ release (Ca²⁺ pool II). At vanadate concentrations up to 1 mm the apparent K_i values were ≈ 300 and $\approx 200 \,\mu\text{M}$, respectively (Ca²⁺ pool I). Both Ca²⁺ pools I and II also showed different sensitivities to IP₃. Dose-response curves for IP₃ in the absence of inhibitors (control) showed an apparent K_m value for IP₃ at $0.6 \,\mu$ M. In the presence of TG (inhibition of Ca^{2+} pool I) the curve was shifted to the left with an apparent K_m for IP₃ at 0.08 μ M. In the presence of vanadate (inhibition of Ca^{2+} pool II), the apparent K_m for IP₃ was 2.1 µm. These data allow the conclusion that there are at least three different Ca²⁺ uptake mechanisms present in pancreatic acinar cells: TG- and IP₃insensitive but highly vanadate-sensitive Ca²⁺ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca²⁺ pools with different TG-, vanadate- and IP₃-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.

Key words: Thapsigargin — Vanadate — Ca²⁺ pump — Ca²⁺ ATPase — SERCA — Endoplasmic reticulum

Introduction

We have previously shown the presence of three different Ca²⁺ pools in pancreatic acinar cells [9]: (i) an IP₃sensitive Ca²⁺ pool; (ii) a caffeine-sensitive Ca²⁺ pool, both of which take up Ca²⁺ via a Ca²⁺ uptake mechanism which is suggested to be a Ca²⁺/H⁺ exchanger and largely insensitive to vanadate at 100 μ M; (iii) a Ca²⁺ pool which is insensitive to both IP₃ and caffeine and which takes up Ca²⁺ via a vanadate (100 μ M) inhibitable Ca²⁺ ATPase [13]. Thapsigargin (TG), a sequiterpene lactone inhibits ATP-dependent Ca²⁺ uptake into intracellular calcium pools in various cell types [19, 22, 24,

^{*} Present address: Department of Physiology, Tohoku University, School of Medicine, Seiryocho 2, 980 Sendai, Japan

29] including pancreatic acinar cells [17]. In rat parotid acinar cells [12, 22] and in bovine adrenal chromaffin cells [8], TG at a high concentration of 2 µM appeared to act only on the IP₃-sensitive Ca²⁺ pool, an IP₃-insensitive Ca²⁺ pool remained unaffected. In other cells, such as neuronal [23, 28] and smooth muscle cells [4], TG also affected IP₃-insensitive Ca²⁺ pools. The TG concentrations used to obtain maximal inhibition of Ca²⁺ uptake were higher than 100 nm [4, 11, 22]. However, in rat brain microsomes total Ca²⁺ uptake was inhibited about 90% by TG at nanomolar concentrations, and only 40% of the TG-sensitive Ca²⁺ uptake was due to Ca²⁺ accumulation into an IP₃-sensitive Ca^{2+} pool [28]. The origin of the TG-resistant Ca²⁺ uptake and how IP₃-sensitive Ca^{2+} pools relate to TG-sensitive and insensitive Ca^{2+} pumps remained unclear. In the present study, we have examined the Ca²⁺ uptake and Ca²⁺ release properties of IP₃-sensitive Ca^{2+} pools using two inhibitors of Ca^{2+} ATPases: thapsigargin and vanadate.

Our findings indicate the presence of at least three different Ca²⁺ transport mechanisms in pancreatic acinar cells. Ca²⁺ pool I: (≈50% of total IP₃-sensitive Ca²⁺ pools) has a low sensitivity to IP₃ and contains an ATP driven Ca²⁺ pump with high sensitivity to TG and a low sensitivity to vanadate. Ca²⁺ pool II (≈40% of IP₃sensitive Ca^{2+} pools) has a higher sensitivity to IP₃ and contains an ATP driven Ca²⁺ pump with lower TG and higher vanadate sensitivity than Ca²⁺ pool I. Ten to 15 percent of the total Ca²⁺ uptake is neither sensitive to TG up to 100 nm nor to IP₃, largely due to Ca^{2+} uptake into plasma membrane vesicles. This Ca²⁺ uptake could be blocked, however, by vanadate at a lower concentration (estimated $K_i \approx 10 \ \mu M$) than Ca^{2+} uptake into IP₃sensitive Ca²⁺ pools. Half maximal inhibitory concentrations of vanadate in this range have been described for the plasma membrane Ca^{2+} ATPase of hepatocytes [1], cardiac sarcolemma and erythrocyte membranes [7]. whereas those of thapsigargin and vanadate for Ca²⁺ uptake into Ca²⁺ pools I and II are similar to the half maximal inhibitory concentrations found for the sarcoendoplasmic reticulum Ca²⁺ ATPases SERCA 2 and SERCA 3, respectively [15, 16, 27].

ABBREVIA	TIONS
----------	-------

BSA:	bovine serum albumin
EDTA:	(ethylenediamine)tetraacetic acid
ER:	endoplasmic reticulum
HEPES:	N-2-hydroxyethylpiperazine-N'-ethanesulfonic acid
IP ₃ :	D-myo-inositol 1,4,5-trisphosphate
Na ₃ VO ₄ :	sodium vanadate
TG:	thapsigargin

Materials and Methods

Creatine kinase was obtained from Boehringer (Mannheim, FRG). Adenosine trisphosphate dipotassium salt (K_2ATP), sodium ortho-

vanadate (Na₃VO₄), EDTA, bovine serum albumin (BSA), creatine phosphate (disodium salt), D-myo-inositol trisphosphate (potassium salt) and thapsigargin were purchased from Sigma (Munich, FRG). Collagenase of *Clostridium histolyticum* was from Worthington (Freehold, NJ). Oligomycin was from Serva (Heidelberg, FRG). ⁴⁵CaCl₂ (11–30 Ci/g) was purchased from New England Nuclear Chemicals (Dreieich, FRG).

PREPARATION OF PANCREATIC MICROSOMES

Pancreatic microsomal vesicles were prepared from isolated rat pancreatic acinar cells as described previously [3, 9]. Briefly, after centrifugation of cell homogenate in a "mannitol buffer" (pH 7.0) at $11,000 \times g$, the "fluffy layer" on top of the pellet was collected. This fraction is enriched about twofold in endoplasmic reticulum [20]. This microsomal fraction represents a heterogeneous population of vesicles unrelated to the polarity of the cell.

PREPARATION OF PANCREATIC PLASMA MEMBRANES

Purified "plasma membrane" vesicles were prepared using a MgCl₂ precipitation method [2]. Briefly, cell homogenate was suspended in a "mannitol buffer" containing 11 mM MgCl₂. Following precipitation of membranes in the presence of MgCl₂ and low-speed centrifugation $(400 \times g \text{ and } 3,000 \times g)$ purified plasma membranes were obtained by high-speed $(25,000 \times g)$ centrifugations of the supernatant. These procedures were repeated three times. Finally, the pellet of the third highspeed centrifugation at $25,000 \times g$ was collected as purified "plasma membranes" and used for Ca2+ uptake. In some cases, a "fluffy layer" fraction was prepared from the $400 \times g$ pellet of the MgCl₂ precipitate, washed in "mannitol buffer" and centrifuged at 11,000 × g to obtain a microsomal fraction with less contamination by plasma membranes than in the method described above [3]. The microsomal vesicles and "plasma membrane" vesicles were used immediately or kept frozen in liquid nitrogen until use. Protein concentration was determined by the method of Bradford [5] using BSA as a standard.

Measurement of ${}^{45}Ca^{2+}$ Uptake and ${}^{45}Ca^{2+}$ Release

Microsomal vesicles (1 mg protein) were preincubated for 15 min at 25°C in 1 ml of a buffer containing (mM): KCl 155, HEPES 5, CaCl₂ 0.0327 (corresponding to 0.002 free Ca²⁺ concentration), EDTA 0.2, MgCl₂ 2.90, (corresponding to 1.0 free Mg²⁺ concentration), oligomycin 0.01, creatine phosphate 10, creatine kinase 8 U/ml, and 1µCi/ml of ⁴⁵CaCl₂ adjusted to pH 7.0 with Tris/HCl. Test substances or the solvents (DMSO/H₂O) used as controls were added from stock solutions in volumes not exceeding 0.4% vol/vol. ⁴⁵Ca²⁺ uptake was initiated by the addition of ATP (potassium salt) at a final concentration of 2 mM.

"Plasma membrane" vesicles (70 µg protein) were preincubated in 500 µl of a buffer containing 20 µCi/ml ⁴⁵CaCl₂. To obtain maximal ⁴⁵Ca²⁺ uptake, the concentration of free calcium in the medium and the final concentration of ATP were increased to 0.01 and 5 mM, respectively [2]. Otherwise, the composition of the medium was the same as for "microsomal" ⁴⁵Ca²⁺ uptake. At indicated times, aliquots were removed from the incubation medium and vesicles were separated from the incubation medium by a rapid filtration technique [2, 3]. MgATP dependent ⁴⁵Ca²⁺ uptake into vesicles was calculated as the difference between ⁴⁵Ca²⁺ content in the presence and absence of ATP. IP₃ was added from stock solutions in a volume of 0.5% (vol/vol). To calculate IP₃-induced ⁴⁵Ca²⁺ release, ⁴⁵Ca²⁺ content of membrane vesicles was determined 10–20 min after addition of IP₃ and subtracted from steady

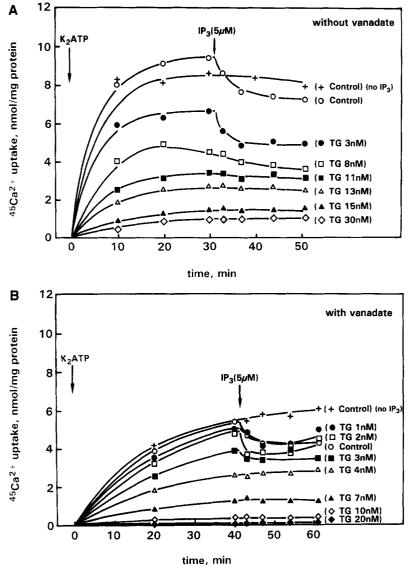


Fig. 1. Effect of thapsigargin (TG) on MgATPinduced ${}^{45}Ca^{2+}$ uptake and IP₃-induced ${}^{45}Ca^{2+}$ release in pancreatic microsomes. Vesicles (1 mg protein) were preincubated for 15 min in 1 ml of a KCI-HEPES buffer in the absence (A) or presence (B) of vanadate (100 μ M) and in the absence or presence of indicated TG concentrations. ${}^{45}Ca^{2+}$ uptake was initiated by the addition of 2 mM K₂ATP · IP₃ (5 μ M) in 4 μ l of incubation buffer that was added as indicated. In the control the same volume of buffer without IP₃ was added. ${}^{45}Ca^{2+}$ uptake in the absence of ATP is subtracted from ${}^{45}Ca^{2+}$ uptake in the presence of ATP. The experiments shown are representative of 3 to 17 similar experiments.

state ${}^{45}Ca^{2+}$ content before addition of IP₃. To account for nonspecific leakage of ${}^{45}Ca^{2+}$ from the vesicles control experiments were performed with addition of buffer instead of IP₃. The radioactivity was counted in a LKB 1214 Rackbeta liquid scintillation counter.

Results

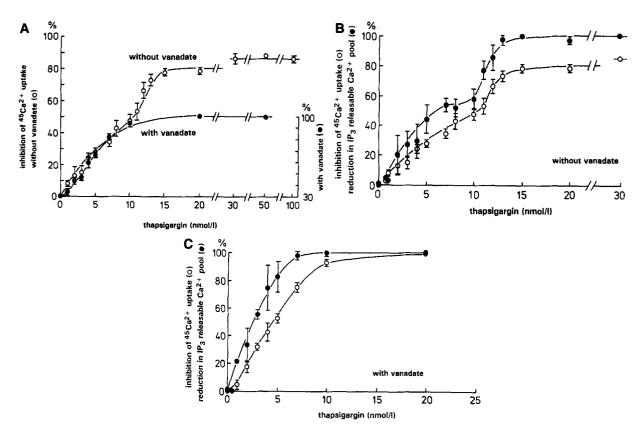
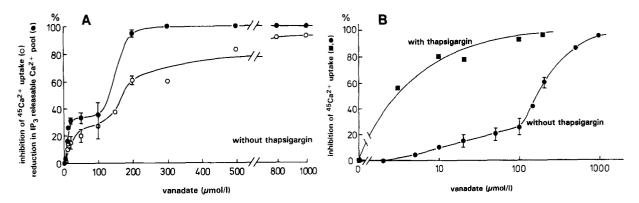

Effects of Thapsigargin on $^{45}Ca^{2+}$ Uptake and the Size of $IP_3\text{-}releasable$ $^{45}Ca^{2+}$ Pools in the Presence and Absence of Vanadate

Figure 1 shows that the rate of ${}^{45}Ca^{2+}$ uptake into microsomal vesicles is lower in the presence of vanadate (100 µM) (Fig. 1*B*) as compared to the control without vanadate (Fig. 1*A*). Furthermore, in microsomes steady state ${}^{45}Ca^{2+}$ uptake at 30–40 min is reduced to \approx 70% of the control in the presence of vanadate (100 µM) (Fig. 1 and the Table). Thapsigargin inhibits ${}^{45}Ca^{2+}$ uptake in a

Table. Effect of vanadate on steady state level of ⁴⁵Ca²⁺ uptake in "microsomal" and "plasma membrane" vesicles


Vanadate concentration (µM) 0 (control)	⁴⁵ Ca ²⁺ uptake into vesicles of				
	Microsomes (%)		Plasma membranes (%)		
	100		100		
1		(ND)	79	(n = 2)	
10	86	(n = 2)	53	(n = 2)	
100	73 ± 8.7	(n = 4)	17	(n = 2)	
200	39 ± 3.2	(n = 3)		(ND)	
500	17	(n = 2)	9.7	(n = 1)	
1000	7.5	(n = 1)		(ND)	

Conditions for measurements of ${}^{45}Ca^{2+}$ uptake into microsomes and plasma membrane vesicles are described in Materials and Methods. ${}^{45}Ca^{2+}$ uptake is calculated as percent of control uptake. 100% is 10.6 \pm 0.9 nmol/mg protein for microsomes (n = 4) and 9.9 nmol/mg protein for plasma membranes (n = 2). ND = not determined

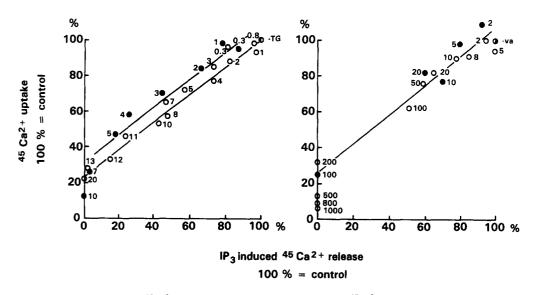
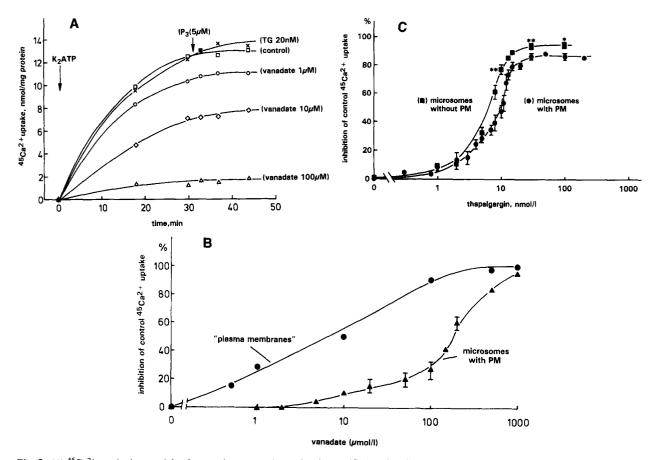


Fig. 2. (A) Effect of thapsigargin on ${}^{45}Ca^{2+}$ uptake in the presence () and absence () of vanadate (100 µM). Each point shows the mean value \pm SE expressed as percent inhibition of steady state ${}^{45}Ca^{2+}$ uptake in controls (100%) measured at 30 min in 3 to 17 experiments of the type shown in Fig. 1. Values without SE are from 1 to 2 experiments. In the absence of both vanadate and thapsigargin the mean value of ${}^{45}Ca^{2+}$ uptake at 30 min in 17 experiments was 9.5 ± 0.7 nmol/mg protein (0% inhibition) and in the presence of 10 nM thapsigargin 5.7 ± 0.8 nmol/mg protein (n = 7). In the presence of vanadate about 30% of control ${}^{45}Ca^{2+}$ uptake was inhibited. The remaining mean ${}^{45}Ca^{2+}$ uptake at 30 min was 6.7 ± 0.6 nmol/mg protein in 14 experiments. This remaining Ca^{2+} uptake was inhibited by thapsigargin concentrations between 10 and 20 nM. (B) Comparison of the thapsigargin (TG) effect on ${}^{45}Ca^{2+}$ uptake in controls, i.e., without TG () at 30 min of IP₃-induced Ca²⁺ release in controls 30 to 50 min after addition of ATP in 3 to 17 experiments of the type shown in Fig. 1. Values without sE are from 1 to 2 experiments. The ${}^{45}Ca^{2+}$ uptake in control conditions (value for 0% inhibition) was 2.3 ± 0.2 nmol/mg protein, (n = 4). (C) Effect of thapsigargin it was 1.1 ± 0.2 nmol/mg protein (n = 7) and at 13 nM of thapsigargin it was 0.1 ± 0.1 nmol/mg protein, (n = 4). (C) Effect of thapsigargin on ${}^{45}Ca^{2+}$ uptake () and on the size of the IP₃-releasable ${}^{45}Ca^{2+}$ pool () in the presence of vanadate (100 µM). Experiments were performed as described in the legend for Fig. 18. Each value is the mean \pm sE from 3 to 14 experiments. Values without SE are from 1 experiments. Values without SE are from 1 to 2 experiments. Values without SE are from 1 experiments. Values without thapsigargin (0% inhibition) was 1.7 ± 0.2 nmol/mg protein (n = 7) and at 13 nM of thapsigargin it was 0.1 ± 0.1 nmol/mg protein, (n = 4).

dose dependent manner both in the presence (Fig. 1*B*) and in the absence (Fig. 1*A*) of vanadate. In the presence of vanadate, nanomolar concentrations of TG strongly inhibit ${}^{45}Ca^{2+}$ uptake and complete inhibition is seen at 10 nM of TG (Fig. 1*B*). However, in the absence of vanadate, some 50% of ${}^{45}Ca^{2+}$ uptake still remains at 10 nM of TG (Figs. 1 and 2*A*). As shown in Fig. 2*A*, the TG effect is biphasic, inhibition further increases at TG concentrations higher than 10 nM and maximal inhibition of \approx 85% of control ${}^{45}Ca^{2+}$ uptake is seen between 15 to 20 nM TG. Some 15% of Ca²⁺ uptake is TG-insensitive even at 100 nM of TG (Fig. 2*A*). This part of Ca²⁺ uptake can be released, however, in the presence of the Ca²⁺ ionophore A23187 (*data not shown*). We assume that this small amount of TG-insensitive Ca²⁺ uptake is due to Ca²⁺ uptake into plasma membrane vesicles (*see below*) contaminating the "fluffy layer" fraction [20], which is known to be TG-insensitive in human erythrocytes [24]. When inhibition of Ca²⁺ uptake at different TG concentrations is compared to the size of the IP₃releasable Ca²⁺ pool (Fig. 2*B*), the first phase of \approx 50– 60% of total IP₃-releasable Ca²⁺ is abolished in the presence of 10 nM TG indicating that Ca²⁺ uptake with higher sensitivity to TG is responsible for the filling of \approx 50– 60% of IP₃-sensitive Ca²⁺ pools (Fig. 2*B*). Hill plot evaluation of this first phase shows an apparent K_i \approx 4.3 nM TG for Ca²⁺ uptake and of 3.2 nM for IP₃-releasable Ca²⁺ pool (*Hill plot not shown*). The second phases for T. Ozawa et al.: Two Different IP₃-sensitive Ca²⁺ Pools

Fig. 3. (A) Comparison of the effect of vanadate on the size of the IP₃-releasable ${}^{45}Ca^{2+}$ pool (\bigcirc) and ${}^{45}Ca^{2+}$ uptake (\bigcirc) in the absence of thapsigargin. Zero percent inhibition was 10.6 ± 0.9 nmol/mg protein (n = 4) for ${}^{45}Ca^{2+}$ uptake and 2.6 ± 0.4 nmol/mg protein (n = 4) for ${}^{45}Ca^{2+}$ release. Data are mean values ± SE from 2 to 4 experiments. (B) Effect of vanadate on ${}^{45}Ca^{2+}$ uptake in the presence (\blacksquare) and absence (\bigcirc) of thapsigargin (TG 10 nM). The data in the presence of thapsigargin are from one experiment. Zero percent inhibition was 6.6 nmol/mg protein for ${}^{45}Ca^{2+}$ uptake with thapsigargin and 10.6 ± 0.9 nmol/mg protein (n = 4) for ${}^{45}Ca^{2+}$ uptake without thapsigargin. Data in the absence of thapsigargin are mean values ± SE from 2 to 4 experiments.

Fig. 4. Relationship between ${}^{45}Ca^{2+}$ uptake and the size of the IP₃-releasable ${}^{45}Ca^{2+}$ pool in the presence of different concentrations of thapsigargin (TG) or vanadate (Va). Left panel shows the effect of different *TG* concentrations (numbers represent inhibitor concentrations in nM) in the absence (\bigcirc) or presence (\bigcirc) of 100 µM vanadate. 100% = control ${}^{45}Ca^{2+}$ uptake or IP₃-releasable ${}^{45}Ca^{2+}$ without thapsigargin in the absence or presence of 100 µM vanadate. Right panel shows the effect of different vanadate concentrations (numbers in µM) in the absence (\bigcirc) or presence (\bigcirc) of 10 nM thapsigargin. 100% = control ${}^{45}Ca^{2+}$ without vanadate in the absence or presence of 10 nM thapsigargin.


both inhibition of Ca²⁺ uptake and reduction in IP₃-induced Ca²⁺ release also show comparable apparent K_i values for TG (\approx 12.1 nM and \approx 11.3 nM, respectively).

When Ca^{2+} uptake of the first phase of inhibition by TG in the absence of vanadate is compared to Ca^{2+} uptake in the presence of 100 µM vanadate, TG dose dependencies for both Ca^{2+} uptake curves are the same (*see* Fig. 2*A*, apparent K_i \approx 4.3 and 4.2 nm TG in the absence and presence of vanadate, respectively). As shown in Fig. 2*C*, in the presence of 100 µM vanadate IP₃-induced Ca^{2+} release is abolished at 10 nm TG indicating that the IP₃-releasable Ca^{2+} pools had not been filled at 10 nm TG. Apparent K_i values of \approx 4.2 nm TG for Ca^{2+} uptake

and $\approx 3.0 \text{ nM}$ for IP₃-induced Ca²⁺ release are similar to apparent K_i values for the first phases in the absence of vanadate (*see* Fig. 2B). This indicates that Ca²⁺ uptake into the IP₃-releasable Ca²⁺ pools with high sensitivity to TG is largely insensitive to vanadate at a concentration of 100 μ M.

Effects of Vanadate on $^{45}Ca^{2+}$ Uptake and the Size of $IP_3\text{-}\mathsf{Releasable}\ ^{45}Ca^{2+}$ Pools in the Presence and Absence of Thapsigargin

In the absence of TG, increasing concentrations of vanadate also show two phases of inhibition for both Ca^{2+}

Fig. 5. (A) ${}^{45}Ca^{2+}$ uptake into vesicles from a plasma membrane fraction purified as described in Materials and Methods in the presence of 20 nM thapsigargin or of vanadate at indicated concentrations. IP₃ (5 μ M) was added to vesicles, where indicated. One representative experiment is shown out of three similar ones. (B) Effect of vanadate on ${}^{45}Ca^{2+}$ uptake in pancreatic microsomes with contaminating plasma membranes PM (\blacktriangle) and in isolated "plasma membrane" vesicles (\bigcirc). Plasma membranes were purified as described in Materials and Methods. Data for ${}^{45}Ca^{2+}$ uptake are mean values from two separate experiments of the type shown in Fig. 5A. The Ca²⁺ uptake curve for microsomes is the same as that shown in Fig. 3A. (C) Effect of thapsigargin on ${}^{45}Ca^{2+}$ uptake into microsomes ("fluffy layer") and into the same fraction depleted in "plasma membranes." "Plasma membranes" and microsomes with "plasma membranes" were prepared as described in Materials and Methods. ${}^{45}Ca^{2+}$ uptake at 30 min was 9.5 ± 0.7 nmol/mg protein in microsomes with "plasma membranes" and 7.8 ± 1.1 nmol/mg protein without "plasma membranes" (0% inhibition). Mean values ± SE from 3 to 14 experiments; significant differences of ${}^{45}Ca^{2+}$ uptake between microsomes with and without "plasma membranes" at the same thapsigargin concentration were calculated using Student's *t*-test for unpaired values (*P < 0.05 **P < 0.01).

uptake and of reduction in the size of IP₃-releasable Ca^{2+} pools. A plateau is indicated at $\approx 100 \,\mu\text{M}$ vanadate (Fig. 3A) at which concentration about 30% of both Ca^{2+} uptake and IP₃-induced Ca²⁺ release are reduced (first phase with apparent K_i values of $\approx 18 \ \mu m$ and $\approx 7 \ \mu m$, respectively; Fig. 3A). Ca^{2+} uptake and the IP₃releasable Ca^{2+} pool can be abolished by vanadate concentrations >200 µM (second phase, see Fig. 3A). Apparent K_i values of vanadate for the second phases are ≈300 µm for Ca²⁺ uptake and ≈200 µm for IP₃-releasable Ca²⁺. Both Ca²⁺ uptake and IP₃-induced Ca²⁺ release with low sensitivity to vanadate are highly sensitive to TG (see Fig. 2C). In the presence of 10 nm TG, a shift of the Ca^{2+} uptake curve to the left is seen (Fig. 3B). This indicates that in the presence of 10 nM TG, the remaining Ca^{2+} uptake with low sensitivity to TG has a higher sensitivity to vanadate than the highly TG-sensitive part

of Ca²⁺ uptake (*see* Fig. 2A and B). Under these conditions, complete inhibition of Ca²⁺ uptake can be obtained by vanadate at concentrations between 100 and 200 μ M and the apparent K_i value of \approx 3 μ M is similar to that of the first, highly vanadate-sensitive phase of Ca²⁺ uptake without TG (*see* Fig. 3A and B).

Filling of Ca^{2+} Pools is Linearly Correlated to $IP_3\mbox{-}releasable \ Ca^{2+}$

A replot of the data of Figs. 2 and 3 shows that IP_3 induced ${}^{45}Ca^{2+}$ release is linearly correlated to the filling of the Ca^{2+} pools, whether or not TG or vanadate are used to inhibit Ca^{2+} uptake (Fig. 4). About 20% of Ca^{2+} is taken up but not released by IP_3 . This indicates that the size of the Ca^{2+} pools determines the amount of

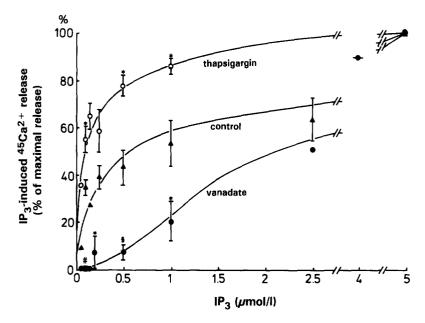


Fig. 6. Dose-response curves for IP₃-induced ⁴⁵Ca²⁺ release in the absence of inhibitors (control \blacktriangle) and presence of 10 nM thapsigargin (\bigcirc) or 100 μ M vanadate (\bigcirc). IP₃-induced Ca²⁺ release was calculated from the difference between mean ⁴⁵Ca²⁺ uptake at steady state before addition of IP₃ (collected in 1 min intervals at 27–30 min after addition of ATP) and mean ⁴⁵Ca²⁺ content 2–6 min (five values determined in 1-min intervals) following addition of IP₃. Points are mean values ± SEM from 3–5 and without SEM from two separate experiments. #P < 0.001, \$P < 0.025, *P < 0.05 using students *t*-test for paired comparison of controls versus thapsigargin or of controls versus vanadate at the same IP₃-concentration.

IP₃-releasable Ca²⁺ and that ≈20% of Ca²⁺ uptake either remains in the IP₃-sensitive Ca²⁺ pools or belongs to IP₃-insensitive Ca²⁺ uptake, part of which could be represented by plasma membranes [1, 7].

⁴⁵Ca²⁺ Uptake into Plasma Membrane Vesicles

As shown in Fig. 2A and B, $\approx 15\%$ of Ca²⁺ uptake is not inhibitable by thapsigargin even at the high concentration of 100 nm. It can be inhibited, however, by 100 µm vanadate (see Fig. 2A, C). The Ca^{2+} which had been taken up in the presence of a high thapsigargin concentration (100 nm) can be released by the Ca^{2+} ionophore A23187, but not by IP_3 (not shown). It is therefore likely that this small part of Ca^{2+} uptake is due to contaminating plasma membrane vesicles. Ca²⁺ uptake into purified "plasma membrane" vesicles is shown in Fig. 5A. Neither IP₃ nor TG have any effect on Ca²⁺ uptake into the "plasma membrane" fraction. However, vanadate is effective. As can be seen from Fig. 5A, 100 µM vanadate inhibits Ca²⁺ uptake by more than 80% indicating a higher vanadate sensitivity of Ca²⁺ uptake into plasma membrane vesicles than of microsomal Ca²⁺ uptake (Table). Replot of the data demonstrates a shift of the Ca²⁺ uptake curve to lower vanadate concentrations for purified "plasma membranes" as compared to microsomes containing plasma membranes (Fig. 5B). When plasma membranes are removed from the "fluffy layer" fraction, we observe stronger inhibition of Ca^{2+} uptake at the same TG concentration as compared to Ca^{2+} uptake into "fluffy layer" vesicles containing plasma membranes (Fig. 5C). In the presence of 30 nm of TG, the TGinsensitive component of ${}^{45}Ca^{2+}$ uptake into microsomes containing plasma membranes is significantly reduced

from $14 \pm 0.6\%$ (n = 3) to $6.9 \pm 1.2\%$ (n = 3, P < 0.01) in microsomes without plasma membranes (*see* Fig. 5*C*). These results indicate that at least part of the TGinsensitive but vanadate-sensitive Ca²⁺ uptake into microsomal vesicles of the "fluffy layer" is due to Ca²⁺ uptake into plasma membrane vesicles.

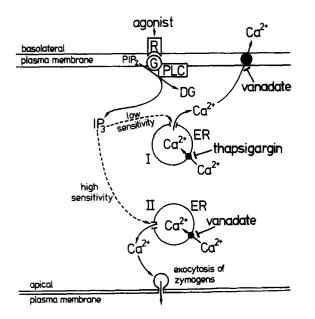
Ca^{2+} Pools with Different Thapsigargin- and Vanadate sensitivities have Different IP₃-sensitivities

In order to characterize further Ca²⁺ uptake into Ca²⁺ pools with different thapsigargin- and vanadate sensitivities, IP₃-induced ⁴⁵Ca²⁺ release was measured from membrane vesicles ('fluffy layer'') at different IP₃-concentrations in the absence or presence of thapsigargin (10 nM) or of vanadate (100 μ M). When maximal IP₃-induced ⁴⁵Ca²⁺ release is set to 100% for each condition tested (3.7 ± 0.9 nmol/mg protein for controls, 3.2 ± 1 nmol/mg protein in the presence of thapsigargin and 0.6 ± 0.1 nmol/mg protein in the presence of vanadate, n = 3), apparent K_m values for IP₃-induced ⁴⁵Ca²⁺ release are estimated to 0.6 μ M for control, to 0.08 μ M in the presence of vanadate (Fig. 6).

Discussion

Our previous studies on isolated pancreatic permeabilized acinar cells have shown the presence of IP₃sensitive and IP₃-insensitive Ca²⁺ pools [9, 25]. We have now further characterized IP₃-sensitive Ca²⁺ pools in a microsomal fraction ("fluffy layer" of an 11,000 × g pellet) which has been previously shown to contain the

microsomes (ER)			plasma membranes
	Ca ²⁺ Ca ²⁺	II Ca ²⁺ Ca ²⁺	Ca ²⁺ no IP ₃ sensitivity
sensitivit	low vanadate Y: high TG low IP ₃	high vanadate Iow TG high IP ₃	highest vanadate no TG no IP ₃
% of total Ca ²⁺ uptake	40 - 50 %	30 - 40 %	10 - 20 %
K _i TG for Ca ²⁺ uptake IP ₃ induced Ca ²⁺ release	4.2 nM 3.0 nM	12.1 nM 11.3 nM	-
K _i vanadate for Ca ²⁺ uptake IP ₃ induced Ca ²⁺ release	300 μM 200 μM	18 μM 7 μM	10 μM
K _m IP ₃ for Ca ²⁺ release	2.1 <i>µ</i> M	80 nM	-


Fig. 7. Model for Ca^{2+} pools in pancreatic membrane vesicles with different sensitivities to thapsigargin, vanadate and IP₃. For further explanations see text.

highest enrichment in IP₃-induced Ca²⁺ release [20]. In addition to vanadate, thapsigargin, an inhibitor of Ca²⁺ uptake into IP₃-sensitive Ca²⁺ pools [22, 24] and of Ca²⁺ (Mg²⁺) ATPases in different cell types [19] has been used. The main finding of this study provides evidence for two different Ca²⁺ pools characterized by different sensitivities to the inhibitors of Ca²⁺ uptake, vanadate and thapsigargin, and different sensitivities of Ca²⁺ release to IP₃.

Two Different IP_3 -sensitive Ca^{2+} Pools with Different Ca^{2+} Uptake and Ca^{2+} Release Mechanisms

As shown in Fig. 4, there is a linear relationship between Ca^{2+} uptake and IP₃-induced Ca^{2+} release, whether or not Ca^{2+} uptake is inhibited by thapsigargin or vanadate. This indicates that the Ca²⁺ that has been taken up into all IP_3 -sensitive Ca^{2+} pools is released by IP_3 at the maximally effective concentration of 5 µM [21]. Since separation of microsomal membranes into different fractions representing distinct Ca²⁺ pools with different Ca²⁺ pumps could not be achieved, K_i values for Ca²⁺ uptake and Ca²⁺ release are only rough estimates that characterize these Ca²⁺ pools functionally. Emphasis is put more on evidence for differences in Ca^{2+} uptake than on correct determination of apparent K_i values. Furthermore, we have considered the possibility that the two distinct Ca²⁺ uptake mechanisms are located in separate Ca²⁺ pools with different sensitivities to IP₃. Figure 6 shows that in the presence of 10 nM thapsigargin, the remaining Ca²⁺ release is highly IP₃-sensitive with an apparent K_m value for IP₃ of 0.08 μ M as compared to the control apparent K_m value of 0.6 μ M. However, if the Ca²⁺ pool with high IP₃-sensitivity is blocked by vanadate (100 μ M), Ca²⁺ release with low sensitivity to IP₃ is still present (K_m for IP₃ 2.1 μ M).

These results are interesting with respect to the recent observations that following hormonal stimulation of pancreatic acinar cells, initial Ca^{2+} release occurs at the luminal cell pole, which is followed by subsequent Ca²⁺ release from basal cell sites [14]. Thorn et al. have provided evidence for functional IP3-receptors with high affinity to IP3 in the secretory pole region and IP3receptors with a lower IP3-affinity in the basal pole region [26]. The type 3 IP₃ receptor has been localized to the apex of pancreatic acinar cells by immunocytochemical studies, whereas the distribution of other IP₃receptor subtypes in pancreas has not been established [18]. Figures 7 and 8 show models that combine recent findings [14, 18, 26] with our present data. We assume two IP₃-sensitive Ca²⁺ pools: a larger Ca²⁺ pool I (\approx 40-50% of total Ca^{2+} uptake) located at the basolateral cell side contains a Ca^{2+} pump with high sensitivity to thapsigargin (apparent $K_i \approx 3-4$ nM), and low sensitivity to vanadate (apparent $K_i \approx 200-300 \ \mu M$). The Ca²⁺ release mechanism of this Ca²⁺ pool has a low sensitivity to IP₃ (apparent $K_m \approx 2.1 \ \mu\text{M}$). A smaller IP₃-sensitive Ca²⁺ pool II (30-40% of total Ca²⁺ uptake) is located at the T. Ozawa et al.: Two Different IP₃-sensitive Ca²⁺ Pools

Fig. 8. Speculative model for apically and basolaterally located Ca^{2+} pools with different Ca^{2+} uptake and Ca^{2+} release mechanisms which combines recent findings with the present data. The apically located Ca^{2+} pool has a Ca^{2+} pump with a high vanadate and a low thapsigargin sensitivity and a Ca^{2+} release mechanism with a high sensitivity to IP₃. The basolaterally located Ca^{2+} pool has a Ca^{2+} pump with a high thapsigargin and low vanadate sensitivity and a low sensitivity to IP₃. For further details see text.

apical cell side. It has a Ca²⁺ pump with opposite sensitivities to inhibitors, i.e., high sensitivity to vanadate (apparent $K_i \approx 10-20 \ \mu$ M) and low sensitivity to thapsigargin (apparent $K_i \approx 11-12 \ n$ M). The Ca²⁺ release mechanism of the Ca²⁺ pool II has a high sensitivity to IP₃ (apparent $K_m \approx 0.08 \ \mu$ M).

Is Ca^{2+} Uptake into Two Different Ca^{2+} Pools Brought about by Different Ca^{2+} ATPases?

We do not have yet any evidence for the types of Ca^{2+} ATPases, which could underly these Ca²⁺ uptake mechanisms. The half maximal inhibitory concentrations of vanadate for Ca²⁺ uptake are similar to those determined for sarcoendoplasmic reticulum Ca²⁺ ATPases SERCA 2 and SERCA 3 [15, 16, 27]. Thapsigargin specificity has been tested on all of the known intracellular-type calcium pumps of the sarcoplasmic and endoplasmic reticulum Ca²⁺ ATPase family (SERCA) following expression of full-length cDNA clones encoding SERCA 1, SERCA 2a, SERCA 2b and SERCA 3 enzymes in COS cells [16]. Thapsigargin inhibited all of the SERCA isozymes with equal potency. Complete inhibition was obtained at 25 nm. In the studies by Lytton et al. [16] and Thastrup et al. [24], high concentrations of thapsigargin (up to 100 nm) were used without paying attention to smaller thapsigargin concentrations in the nanomolar range up to 10 nm. However, a study on Ca^{2+} stores of

endoplasmic reticulum from rat brain, as in the present study, revealed maximal inhibitory concentrations of 10 nM with an IC_{50} value of 2 nM TG [28]. As shown in Fig. 2A an apparent K_i value of \approx 3-4 nM can be evaluated from the first phase of Ca^{2+} uptake. This K_i value is further substantiated, when Ca²⁺ uptake is measured in the presence of 100 µm of vanadate which abolishes the second phase of TG-induced inhibition of Ca²⁺ uptake and leaves a Ca²⁺ uptake curve identical to the first phase of Ca²⁺ uptake. Recently, two isoforms of the SERCA-2b type Ca^{2+} , (Mg^{2+}) -ATPase have been described in pancreatic endoplasmic reticulum [10]. However, no attempts have been made to determine whether they possess different functional properties and cellular localization [10]. Northern blotting of pancreatic tissue has demonstrated mRNA for SERCA types 2b and 3 [6]. It therefore appears likely that these Ca^{2+} ATPases are involved in Ca^{2+} uptake into IP₃-sensitive Ca^{2+} pools.

In addition to the two Ca^{2+} uptake mechanisms in intracellular microsomal membranes, we found a third Ca^{2+} pump with high sensitivity to vanadate ($K_i \approx 10 \,\mu$ M) and no sensitivity to thapsigargin and IP₃. This pump is most likely located in the plasma membrane. Half maximal inhibitory concentration of vanadate for Ca^{2+} uptake at $\approx 10 \,\mu$ M (*see* Fig. 5B) has been described for plasma membrane Ca^{2+} ATPases of hepatocytes [1], cardiac sarcolemma and erythrocyte membrane [7]. Further studies will have to determine whether or not both Ca^{2+} uptake mechanisms in intracellular membranes as described in the present study can be assigned to different types of SERCA-type Ca^{2+} ATPases located in Ca^{2+} pools with different sensitivities to IP₃ and distinct locations in pancreatic acinar cells.

This work was supported by the "Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246." The authors wish to thank Dr. Klaus-Dieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help.

References

- Bachs, O., Famulski, K.S., Mirabelli, F., Carafoli, E. 1985. ATPdependent Ca²⁺ transport in vesicles isolated from the bile canalicular region of the hepatocyte plasma membrane. *Eur. J. Biochem.* 147:1–7
- Bayerdörffer, E., Eckhardt, L., Haase, W., Schulz, I. 1985. Electrogenic calcium transport in plasma membrane of rat pancreatic acinar cells. J. Membrane Biol. 84:45–60
- Bayerdörffer, E., Streb, H., Eckhardt, L., Haase, W., Schulz, I. 1984. Characterization of calcium uptake into rough endoplasmic reticulum of rat pancreas. J. Membrane Biol. 81:69–82
- Bian, J., Ghosh, T.K., Wang, J.-C., Gill, D.L. 1991. Identification of intracellular calcium pools: selective modification by thapsigargin. J. Biol. Chem. 266:8801–8806
- Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* 72:248-254
- 6. Burk, S.E., Lytton, J., MacLennan, D.H., Shull, G.E. 1989. cDNA

cloning, functional expression, and mRNA tissue distribution of a third organellar Ca²⁺ pump. J. Biol. Chem. 264:18561-18568

- Carafoli, E., Zurini, M. 1982. The Ca²⁺-pumping ATPase of plasma membranes: purification, reconstitution and properties. *Biochim. Biophys. Acta* 683:279–301
- Cheek, T.R., Thastrup, O. 1989. Internal Ca²⁺ mobilization and secretion in bovine adrenal chromaffin cells. *Cell Calcium* 10:213– 221
- Dehlinger-Kremer, M., Zeuzem, S., Schulz, I. 1991. Interaction of caffeine-, IP₃- and vanadate-sensitive Ca²⁺ pools in acinar cells of the exocrine pancreas. J. Membrane Biol. 119:85–100
- Dormer, R.L., Capurro, D.E., Morris, R., Webb, R. 1993. Demonstration of two isoforms of the SERCA-2b type Ca²⁺, Mg²⁺-ATPase in pancreatic endoplasmic reticulum. *Biochim. Biophys. Acta* 1152:225-230
- Ely, J.A., Ambroz, C., Baukal, A.J., Christensen, S.B., Balla, T., Catt, K.J. 1991. Relationship between agonist- and thapsigarginsensitive calcium pools in adrenal glomerulosa cells: thapsigargininduced Ca²⁺ mobilization and entry. J. Biol. Chem. 266:18635– 18641
- Foskett, J.K., Roifman, C.M., Wong, D. 1991. Activation of calcium oscillations by thapsigargin in parotid acinar cells. J. Biol. Chem. 266:2778–2782
- Imamura, K., Schulz, I. 1985. Phosphorylated intermediate of (Ca²⁺ + K⁺-stimulated Mg²⁺-dependent transport ATPase in endoplasmic reticulum from rat pancreatic acinar cells. *J. Biol. Chem.* 260:11339-11347
- Kasai, H., Augustine, G.J. 1990. Cytosolic Ca²⁺ gradients triggering unidirectional fluid secretion from exocrine pancreas. *Nature* 348:735-738
- Lytton, J., Westlin, M., S.E., Shull, G.E., MacLennan, D.H. 1992. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. *J. Biol. Chem.* 267:14483–14489
- Lytton, J., Westlin, M., Hanley, M.R. 1991. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase Family of calcium pumps. J. Biol. Chem. 266:17067–17071
- Metz, D.C., Patto, R.J., Mrozinski, J.E., Jr., Jensen, R.T., Turner, R.J., Gardner, J.D. 1992. Thapsigargin defines the roles of cellular calcium in secretagogue-stimulated enzyme secretion from pancreatic acini. J. Biol. Chem. 267:20620–20629
- Nathanson, M.H., Fallon, M.B., Padfield, P.J., Maranto, A.R. 1994. Localization of the type 3 inositol 1,4,5-trisphosphate recep-

tor in the Ca²⁺ wave trigger zone of pancreatic acinar cells. J. Biol. Chem. **269**:4693–4696

- Sagara, Y., Inesi, G. 1991. Inhibition of the sarcoplasmic reticulum Ca²⁺ transport ATPase by thapsigargin at subnanomolar concentrations. J. Biol. Chem. 266:13503-13506
- Streb, H., Bayerdörffer, E., Haase, W., Irvine, R.F., Schulz, I. 1984. Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J. Membrane Biol. 81:241–253
- Streb, H., Irvine, R.F., Berridge, M.J., Schulz, I. 1983. Release of Ca²⁺ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. *Nature* 306:67–69
- Takemura, H., Hughes, A.R., Thastrup, O., Putney, J.W., Jr. 1989. Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. J. Biol. Chem. 264:12266–12271
- Takemura, H., Ohshika, H., Yokosawa, N., Oguma, K., Thastrup, O. 1991. The thapsigargin-sensitive intracellular Ca²⁺ pool is more important in plasma membrane Ca²⁺ entry than the IP₃-sensitive intracellular Ca²⁺ pool in neuronal cell lines. *Biochem. Biophys. Res. Commun.* 180:1518–1526
- 24. Thastrup, O., Cullen, P.J., Drobak, B.K., Hanley, M.R., Dawson, A.P. 1990. Thapsigargin, a tumor promoter, discharges intracellular Ca²⁺ stores by specific inhibition of the endoplasmic reticulum Ca²⁺ ATPase. *Proc. Natl. Acad. Sci. USA* 87:2466–2470
- Thévenod, F., Dehlinger-Kremer, M., Kemmer, T.P., Christian, A.-L., Potter, B.V.L., Schulz, I. 1989. Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and -insensitive (IsCaP) nonmitochondrial Ca²⁺ pools in rat pancreatic acinar cells. *J. Membrane Biol.* 109:173–186
- Thorn, P., Lawrie, A.M., Smith, P.M., Gallacher, D.V., Petersen, O.H. 1993. Local and global cytosolic Ca²⁺ oscillations in exocrine cells evoked by agonists and inositol trisphosphate. *Cell* 74:661–668
- Verboomen, H., Wuytack, F., De Smedt, H., Himpens, B., Casteels, R. 1992. Functional difference between SERCA2a and SERCA2b Ca²⁺ pumps and their modulation by phospholamban. *Biochem. J.* 286:591–596
- Verma, A., Hirsch, D.J., Hanley, M.R., Thastrup, O., Christensen, S.B., Snyder, S.H. 1990. Inositol trisphosphate and thapsigargin discriminate endoplasmic reticulum stores of calcium in rat brain. *Biochem. Biophys. Res. Commun.* **172**:811–816
- Xuan, Y.-T., Wang, O.-L., Whorton, A.R. 1992. Thapsigargin stimulates Ca²⁺ entry in vascular smooth muscle cells: nicardipinesensitive and -insensitive pathways. *Am. J. Physiol.* 262:C1258– C1265