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Abstract. We have examined the effect of  the Ca 2+ 
(Mg2+)-ATPase inhibitors thapsigargin (TG) and vana- 
date on ATP-dependent  45Ca2+ uptake into IP3-sensitive 
Ca 2§ pools in isolated microsomes from rat pancreatic 
acinar cells. The inhibitory effect of  TG was biphasic. 
About  40-50% of  total Ca 2+ uptake was inhibited by TG 
up to 10 nM (apparent K i = 4.2 riM, Ca 2+ pool I). An 
additional increase of  inhibition up to 85-90% of  total 
Ca 2§ uptake could be achieved at 15 to 20 nM of  TG 
(apparent K i = 12.1 riM, Ca 2§ pool  II). The rest was due 
to TG-insensit ive contaminating plasma membranes and 
could be inhibited by vanadate (apparent K i = 10 ~M). 
In the absence of  TG, increasing concentrations of  van- 
adate also showed two phases of  inhibition of  microso- 
mal Ca 2+ uptake. About  30-40% of  total Ca 2§ uptake 
was inhibited by 100 ~M of  vanadate (apparent K i = 18 
~tM, Ca 2+ pool II). The remaining 60-70% could be in- 
hibited either by vanadate at concentrations up to 1 rnM 
(apparent K i = 300 ~tM) or by TG up to 10 nM (Ca 2§ pool 
I). The amount of  IP3-induced Ca 2§ release was constant 
at =25% over a wide range of  Ca 2§ filling. About  10-  
20% remained unreleasable by IP 3. Reduction of  IP 3- 
releasable Ca 2+ in the presence of  inhibitors showed sim- 
ilar dose-response curves as Ca 2+ uptake (apparent K i = 

3.0 nM for IP3-induced Ca 2§ release as compared to =4.2 
nM for Ca 2§ uptake at TG up to 10 riM) indicating that the 
highly TG-sensit ive Ca 2§ pump fills the IP3-sensitive 
Ca 2§ pool  I. At  TG concent ra t ions  >10 nM which  
blocked Ca 2§ pool II the apparent K i values were =11.3 
and =12.1 nM, respectively. For inhibition by vanadate 
up to 100 ~tr~ the apparent K i values were ---18 ~tM for 
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Ca 2§ uptake and =7 ~tM for Ca 2§ release (Ca 2§ pool II). 
At vanadate concentrations up to 1 mM the apparent K i 
values were =300 and =200 ~tM, respectively (Ca 2+ pool 
I). Both Ca 2§ pools I and II also showed different sen- 
sitivities to IP 3. Dose-response curves for IP 3 in the ab- 
sence of  inhibitors (control) showed an apparent K m 
value for IP 3 at 0.6 ~tM. In the presence of  TG (inhibition 
of  Ca 2+ pool I) the curve was shifted to the left with an 
apparent K m for IP 3 at 0.08 gM. In the presence of  van- 
adate (inhibition of  Ca 2+ pool II), the apparent K m for IP 3 
was 2.1 BM. These data allow the conclusion that there 
are at least three different Ca 2§ uptake mechanisms 
p re sen t  in pa nc re a t i c  ac ina r  ce l l s :  TG-  and IP 3- 
insensitive but highly vanadate-sensit ive Ca 2+ uptake 
occurs into membrane vesicles derived from plasma 
membranes. Two Ca 2§ pools with different TG-, vana- 
date- and IP3-sensitivities are most l ikely located in the 
endoplasmic reticulum at different cell sites, which could 
have functional implications for hormonal stimulation of  
pancreatic acinar cells. 

Key words: Thapsigargin - -  Vanadate - -  Ca 2§ pump - -  
Ca 2+ ATPase - -  SERCA - -  Endoplasmic reticulum 

Introduction 

We have previously shown the presence of  three differ- 
ent Ca 2§ pools in pancreatic acinar cells [9]: (i) an IP 3- 
sensitive Ca 2+ pool; (ii) a caffeine-sensitive Ca 2+ pool, 
both of  which take up Ca 2§ via a Ca z§ uptake mechanism 
which is suggested to be a Ca2§ § exchanger  and 
largely insensitive to vanadate at 100 p3~; (iii) a Ca 2§ 
pool which is insensitive to both IP 3 and caffeine and 
which takes up Ca 2+ via a vanadate (100 ~tM) inhibitable 
Ca 2+ ATPase [13]. Thapsigargin (TG), a sequiterpene 
lactone inhibits ATP-dependent  Ca 2§ uptake into intra- 
cellular calcium pools in various cell types [19, 22, 24, 
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29] including pancreat ic  acinar cells [17]. In rat parotid 
acinar cells [12, 22] and in bov ine  adrenal chromaff in  

cells  [8], T G  at a high concentra t ion of  2 gM appeared to 

act only on the IP3-sensit ive Ca 2+ pool,  an IP3-insensit ive 
Ca ~+ pool  remained  unaffected.  In other  cells, such as 

neuronal  [23, 28] and smooth muscle  cells  [4], TG also 
affected IP3-insensit ive Ca 2+ pools.  The  T G  concentra-  
tions used to obtain max imal  inhibit ion of  Ca 2+ uptake 

were  higher  than 100 nM [4, 1 1, 22]. However ,  in rat 
brain mic rosomes  total Ca 2+ uptake was inhibited about 

90% by T G  at nanomolar  concentrat ions,  and only 40% 
of  the TG-sens i t ive  Ca 2+ uptake was due to Ca 2+ accu- 

mulat ion into an IP3-sensit ive Ca 2+ pool  [28]. The  origin 
of  the TG-resis tant  Ca 2+ uptake and how IP3-sensit ive 
Ca 2§ pools  relate to TG-sens i t ive  and insensi t ive Ca 2+ 

pumps  remained  unclear.  In the present study, we have 
examined  the Ca 2§ uptake and Ca 2+ release properties o f  
IP3-sensit ive Ca 2+ pools  using two inhibitors of  Ca 2+ 

ATPases:  thapsigargin and vanadate.  
Our f indings indicate the presence of  at least three 

different  Ca 2§ transport mechan i sms  in pancreat ic  acinar 

cells. Ca 2§ pool  I: (=50% of  total IP3-sensit ive Ca 2+ 

pools)  has a low sensit ivity to IP 3 and contains an A T P  
driven Ca 2§ pump with high sensit ivity to T G  and a low 

sensi t iv i ty  to vanadate .  Ca  2§ pool  II (=40% of  IP 3- 

sensi t ive Ca 2+ pools)  has a higher  sensit ivity to IP 3 and 
contains an A T P  dr iven Ca 2§ pump with lower  T G  and 

higher  vanadate  sensit ivity than Ca 2§ pool  I. Ten to 15 
percent  of  the total Ca 2§ uptake is neither sensi t ive to TG 

up to 100 nM nor to IP 3, largely due to Ca 2+ uptake into 
plasma membrane  vesicles.  This Ca 2§ uptake could be 

blocked,  however ,  by vanadate at a lower  concentrat ion 
(es t imated  K i = 10 gM) than Ca 2+ uptake  into IP 3- 

sensi t ive Ca 2+ pools. Ha l f  maximal  inhibitory concen-  

trations o f  vanadate  in this range have  been  descr ibed for 
the p lasma membrane  Ca 2+ ATPase  of  hepatocytes  [1], 

card iac  s a r co l emma  and e ry th rocy te  m e m b r a n e s  [7], 
whereas  those of  thapsigargin and vanadate  for Ca 2+ up- 

take into Ca 2+ pools  I and II are similar  to the half  max-  

imal  inhibi tory concentrat ions found for the sarcoendo- 
plasmic  re t iculum Ca 2+ ATPases  S E R C A  2 and S E R C A  

3, respect ively  [15, 16, 27]. 

ABBREVIATIONS 

BSA: 
EDTA: 
ER: 
HEPES: 
IP3: 
Na3VO4: 
TG: 

bovine serum albumin 
(ethylenediamine)tetraacetic acid 
endoplasmic reticulum 
N-2-hydroxyethylpiperazine-N'-ethanesulfonic acid 
D-myo-inositol 1,4,5-trisphosphate 
sodium vanadate 
thapsigargin 

Materials and Methods 

Creatine kinase was obtained from Boehringer (Mannheim, FRG). 
Adenosine trisphosphate dipotassium salt (KzATP), sodium ortho- 

vanadate (Na3VO4), EDTA, bovine serum albumin (BSA), creatine 
phosphate (disodium salt), D-myo-inositol trisphosphate (potassium 
salt) and thapsigargin were purchased from Sigma (Munich, FRG). 
Collagenase of Clostridium histolyticum was from Worthington (Free- 
hold, NJ). Oligomycin was from Serva (Heidelberg, FRG). 45CaC12 
(11-30 Ci/g) was purchased from New England Nuclear Chemicals 
(Dreieich, FRG). 

PREPARATION OF PANCREATIC MICROSOMES 

Pancreatic microsomal vesicles were prepared from isolated rat pan- 
creatic acinar cells as described previously [3, 9]. Briefly, after cen- 
trifugation of cell homogenate in a "mannitol buffer" (pH 7.0) at 
11,000 x g, the "fluffy layer" on top of the pellet was collected. This 
fraction is enriched about twofold in endoplasmic reticulum [20]. This 
microsomal fraction represents a heterogeneous population of vesicles 
unrelated to the polarity of the cell. 

PREPARATION OF PANCREATIC PLASMA MEMBRANES 

Purified "plasma membrane" vesicles were prepared using a MgCI 2 
precipitation method [2]. Briefly, cell homogenate was suspended in a 
"mannitol buffer" containing 11 mM MgC12. Following precipitation 
of membranes in the presence of MgC12 and low-speed centrifugation 
(400 • g and 3,000 x g) purified plasma membranes were obtained by 
high-speed (25,000 x g) centrifugations of the supernatant. These pro- 
cedures were repeated three times. Finally, the pellet of the third high- 
speed centrifugation at 25,000 x g was collected as purified "plasma 
membranes" and used for Ca 2+ uptake. In some cases, a "fluffy 
layer" fraction was prepared from the 400 x g pellet of the MgCI 2 
precipitate, washed in "mannitol buffer" and centrifuged at 11,000 x 
g to obtain a microsomal fraction with less contamination by plasma 
membranes than in the method described above [3]. The microsomal 
vesicles and "plasma membrane" vesicles were used immediately or 
kept frozen in liquid nitrogen until use. Protein concentration was 
determined by the method of Bradford [5] using BSA as a standard. 

MEASUREMENT OF 45Ca2+ UPTAKE AND 45Ca2+ RELEASE 

Microsomal vesicles (1 mg protein) were preincubated for 15 min at 
25~ in 1 ml of a buffer containing (mM): KC1 155, HEPES 5, CaCI 2 
0.0327 (corresponding to 0.002 free Ca 2+ concentration), EDTA 0.2, 
MgC12 2.90, (corresponding to 1.0 free Mg 2+ concentration), oligomy- 
cin 0.01, creatine phosphate 10, creatine kinase 8 U/ml, and lgCi/ml of 
45CAC12 adjusted to pH 7.0 with Tris/HCl. Test substances or the sot- 
vents (DMSO/H20) used as controls were added from stock solutions 
in volumes not exceeding 0.4% vol/vol. 45Ca 2+ uptake was initiated by 
the addition of ATP (potassium salt) at a final concentration of 2 mM. 

"Plasma membrane" vesicles (70 gg protein) were preincubated 
in 500 gl of a buffer containing 20 laCi/m145CAC12. To obtain maximal 
45Ca2+ uptake, the concentration of free calcium in the medium and the 
final concentration of ATP were increased to 0.01 and 5 raM, respec- 
tively [2]. Otherwise, the composition of the medium was the same as 
for "microsomal" 45Ca2+ uptake. At indicated times, aliquots were 
removed from the incubation medium and vesicles were separated from 
the incubation medium by a rapid filtration technique [2, 3]. MgATP 
dependent 45Ca2+ uptake into vesicles was calculated as the difference 
between 4SCa2+ content in the presence and absence of ATP. IP 3 was 

added from stock solutions in a volume of 0.5% (vol/vol). To calculate 
IP3-induced 45Ca2+ release, 45Ca2+ content of membrane vesicles was 
determined 10-20 rain after addition of IP 3 and subtracted from steady 
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Fig. 1. Effect of thapsigargin (TG) on MgATP- 
induced 45Ca2§ uptake and IP3-induced 45CaZ§ re- 

lease in pancreatic microsomes. Vesicles (1 mg pro- 
tein) were preincubated for 15 min in 1 ml of a 
KC1-HEPES buffer in the absence (A) or presence 
(B) of vanadate (100 l.tM) and in the absence or 
presence of indicated TG concentrations. 45Ca2+ up- 
take was initiated by the addition of 2 mM K2ATP �9 
IP 3 (5 p.M) in 4 p.1 of incubation buffer that was 
added as indicated. In the control the same volume 
of buffer without IP 3 was added. 45Ca2§ uptake in 
the absence of ATP is subtracted from 45Ca2+ uptake 
in the presence of ATP. The experiments shown are 
representative of 3 to 17 similar experiments. 

t ime,  rain 

state 45Ca2+ content before addition of IP 3. To account for nonspecific 
leakage of 45Ca2+ from the vesicles control experiments were per- 
formed with addition of buffer instead of IP 3. The radioactivity was 
counted in a LKB 1214 Rackbeta liquid scintillation counter. 

Results 

Table. Effect of vanadate on steady state level of 45Ca2+ uptake in 
"microsomal" and "plasma membrane" vesicles 

Vanadate 
concentration 
(gM) 

45Ca2+ uptake into vesicles of 

Microsomes Plasma membranes 
(%) (%) 

EFFECTS OF THAPSIGARGIN ON 45Ca 2+ UPTAKE AND THE 

SIZE OF IP3-RELEASABLE 45Ca2+ POOLS IN THE PRESENCE 

AND ABSENCE OF VANADATE 

Figure 1 shows that the rate of 45Ca2+ uptake into mi- 
crosomal vesicles is lower in the presence of vanadate 
(100 gM) (Fig. 1B) as compared to the control without 
vanadate (Fig. 1A). Furthermore, in microsomes steady 
state 45Ca2+ uptake at 30-40 min is reduced to ---70% of 
the control in the presence of vanadate (100 gM) (Fig. 1 
and the Table). Thapsigargin inhibits 45Ca2+ uptake in a 

0 (control) 100 100 
1 (NO) 79 (n = 2) 

10 86 (n = 2) 53 (n = 2) 
100 73 --+ 8.7 (n = 4) 17 (n = 2) 
200 39 --+ 3.2 (n = 3) (NO) 
500 17 (n = 2) 9.7 (n = 1) 

1000 7.5 (n = 1) (ND) 

Conditions for measurements of 4SCa2+ uptake into microsomes and 
plasma membrane vesicles are described in Materials and Methods. 
45Ca2+ uptake is calculated as percent of control uptake. 100% is 10.6 
+ 0.9 nmol/mg protein for microsomes (n = 4) and 9.9 nmol/mg protein 
for plasma membranes (n = 2). No = not determined 
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Fig. 2. (A) Effect of thapsigargin on 45Ca2+ uptake in the presence (0)  and absence (Q)) of vanadate (100 I.tM). Each point shows the mean value 
+_ sE expressed as percent inhibition of steady state 4SCa 2+ uptake in controls (100%) measured at 30 min in 3 to 17 experiments of the type shown 
in Fig. 1. Values without SE are from 1 to 2 experiments. In the absence of both vanadate and thapsigargin the mean value of 4SCa2§ uptake at 30 
min in 17 experiments was 9.5 + 0.7 nmol/mg protein (0% inhibition) and in the presence of 10 nM thapsigargin 5.7 + 0.8 nmol/mg protein (n = 
7). In the presence of vanadate about 30% of control 45Ca2+ uptake was inhibited. The remaining mean 45Ca2+ uptake at 30 min was 6.7 + 0.6 
nmol/mg protein in 14 experiments. This remaining Ca 2§ uptake was inhibited by thapsigargin concentrations between 10 and 20 riM. (B) 
Comparison of the thapsigargin (TG) effect on 45Ca2+ uptake (Q)) and on the size of the IP3-releasable Ca 2+ pool (0).  Each point shows the mean 
value _+ SE as percent inhibition of steady state 45Ca2+ uptake in controls, i.e., without TG (O) at 30 min of IP3-induced Ca 2+ release in controls 
30 to 50 min after addition of ATP in 3 to 17 experiments of the type shown in Fig. 1. Values without sz are from 1 to 2 experiments. The 45Ca2+ 
uptake curve is the same as that shown in (A). IP3-releasable 4SCa 2+ in control conditions (value for 0% inhibition) was 2.3 + 0.2 nmol/mg protein 
in 17 experiments. At 10 nM of thapsigargin it was 1,1 + 0.2 nmol/mg protein (n = 7) and at 13 nM of thapsigargin it was 0.1 + 0.1 nmol/mg protein, 
(n = 4). (C) Effect of thapsigargin on 45Ca2+ uptake (O) and on the size of the IP3-releasable 45Ca2+ pool (0)  in the presence of vanadate (100 
IXM). Experiments were performed as described in the legend for Fig. lB. Each value is the mean +_ SE from 3 to 14 experiments. Values without 
SE are from 1 experiment. Values for Ca 2§ uptake are taken from Fig. 2A. The mean value for IP3-releasable Ca 2+ in the presence of vanadate and 
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dose  dependent  manner  both in the presence  (Fig. 1B) 

and in the absence (Fig. 1A) of  vanadate.  In the presence 
o f  vanadate,  nanomolar  concentrat ions  o f  T G  strongly 
inhibit  45Ca2+ uptake and comple te  inhibit ion is seen at 

10 rim of  T G  (Fig. 1B). However ,  in the absence o f  
vanadate,  some 50% of  45Ca2+ uptake still remains  at 10 

nM of  T G  (Figs. 1 and 2A). As shown in Fig. 2A, the T G  
effect  is biphasic,  inhibi t ion further increases at T G  con- 
centrations h igher  than 10 n~  and max imal  inhibit ion of  
=85% of  control  45CaZ+ uptake is seen be tween  15 to 20 
nM TG. S o m e  15% of  Ca z§ uptake is TG-insens i t ive  
even  at 100 nM of  T G  (Fig. 2A). This  part of  Ca 2§ uptake 

can be released, however ,  in the presence o f  the Ca  2§ 
ionophore  A23187 (data not shown). W e  assume that 

this small  amount  o f  TG- insens i t ive  Ca  2+ uptake is due 

to Ca 2+ uptake into p lasma membrane  vesic les  (see be- 
low) contamina t ing  the " f l u f f y  l a y e r "  f ract ion [20], 
which is known to be TG-insens i t ive  in human erythro- 
cytes [24]. When  inhibi t ion o f  Ca 2+ uptake at different  

T G  concentrat ions is compared  to the size o f  the IP 3- 

releasable  Ca  > pool  (Fig. 2B), the first phase o f  = 5 0 -  
60% of  total IP3-releasable Ca  2+ is abol ished in the pres- 
ence o f  10 nM T G  indicat ing that Ca 2+ uptake with  higher  
sensit ivity to T G  is responsible  for the fi l l ing of  = 5 0 -  

60% of  IP3-sensi t ive Ca a+ pools  (Fig. 2B). Hi l l  plot  

evaluat ion of  this first phase shows an apparent K i = 4.3 
nM T G  for Ca  2+ uptake and of  3.2 nM for IP3-releasable 
Ca 2+ pool  (Hill plot not shown). The second phases for 
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both inhibition of Ca 2§ uptake and reduction in IP 3- 
induced Ca 2§ release also show comparable apparent K i 
values for TG (=12.1 nM and =11.3 riM, respectively). 

When Ca 2+ uptake of the first phase of inhibition by 
TG in the absence of vanadate is compared to Ca 2+ up- 
take in the presence of 100 ~M vanadate, TG dose de- 
pendencies for both Ca 2§ uptake curves are the same (see 
Fig. 2A, apparent K i = 4.3 and 4.2 nM TG in the absence 
and presence of vanadate, respectively). As shown in 
Fig. 2C, in the presence of 100 gM vanadate IP3-induced 
Ca 2§ release is abolished at 10 nM TG indicating that the 
IP3-releasable Ca 2§ pools had not been filled at 10 nM 
TG. Apparent K i values of =4.2 nM TG for Ca 2§ uptake 

and =3.0 nM for IP3-induced Ca 2+ release are similar to 
a p p a r e n t  K i values for the first phases in the absence of 
vanadate (see Fig. 2B). This indicates that Ca 2+ uptake 
into the IP3-releasable Ca 2+ pools with high sensitivity to 
TG is largely insensitive to vanadate at a concentration 
of 100 gM. 

EFFECTS OF VANADATE ON 45Ca2+ UPTAKE AND THE SIZE 

OF [P3-RELEASABLE 45Ca2+ POOLS IN THE PRESENCE AND 

ABSENCE OF THAPSIGARGIN 

In the absence of TG, increasing concentrations of van- 
adate also show two phases of inhibition for both C a  2+ 
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in isolated "plasma membrane" vesicles (Q). Plasma membranes were purified as described in Materials and Methods. Data for 45Ca2+ uptake are 
mean values from two separate experiments of the type shown in Fig. 5A. The Ca 2+ uptake curve for microsomes is the same as that shown in Fig. 
3A. (C) Effect of thapsigargin on 45Ca2+ uptake into microsomes ("fluffy layer") and into the same fraction depleted in "plasma membranes." 
"Plasma membranes" and microsomes without "plasma membranes" were prepared as described in Materials and Methods. 4 5 C a 2 +  uptake at 30 
min was 9.5 + 0.7 nmol/mg protein in microsomes with "plasma membranes" and 7.8 + 1.1 nmol/mg protein without "plasma membranes" (0% 
inhibition). Mean values + sE from 3 to 14 experiments; significant differences of 45Ca2+ uptake between microsomes with and without "plasma 
membranes" at the same thapsigargin concentration were calculated using Student's t-test for unpaired values (*P < 0.05 **P < 0.01). 

uptake and of reduction in the size of IP3-releasable Ca 2§ 
pools. A plateau is indicated at =100 pr~ vanadate (Fig. 
3A) at which concentration about 30% of both Ca 2+ up- 
take and IP3-induced Ca 2§ release are reduced (first 
phase with apparent K i values of --18 gM and =7 gM, 
respectively;  Fig. 3A). Ca 2§ uptake and the IP 3- 
releasable Ca 2§ pool can be abolished by vanadate con- 
centrations >200 gM (second phase, see Fig. 3A). Ap- 
parent K i values of vanadate for the second phases are 
=300 t.tr~ for Ca 2+ uptake and =200 gM for IP3-releasable 
Ca 2+. Both Ca 2+ uptake and IP3-induced Ca 2+ release 
with low sensitivity to vanadate are highly sensitive to 
TG (see Fig. 2C). In the presence of 10 nM TG, a shift of 
the Ca 2§ uptake curve to the left is seen (Fig. 3B). This 
indicates that in the presence of 10 nM TG, the remaining 
Ca 2+ uptake with low sensitivity to TG has a higher 
sensitivity to vanadate than the highly TG-sensitive part 

of Ca 2§ uptake (see Fig. 2A and B). Under these condi- 
tions, complete inhibition of Ca 2§ uptake can be obtained 
by vanadate at concentrations between 100 and 200 gr~ 
and the apparent K i value of =3 gM is similar to that of 
the first, highly vanadate-sensitive phase of Ca 2§ uptake 
without TG (see Fig. 3A and B). 

FILLING OF C a  2+ POOLS IS LINEARLY CORRELATED TO 

IP3-RELEASABLE C a  2+ 

A replot of the data of Figs. 2 and 3 shows that IP 3- 
induced 45Ca2+ release is linearly correlated to the filling 
of the Ca 2§ pools, whether or not TG or vanadate are 
used to inhibit Ca 2+ uptake (Fig. 4). About 20% of Ca 2§ 
is taken up but not released by IP 3. This indicates that 
the size of the Ca 2§ pools determines the amount of 
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Fig. 6. Dose-response curves for IP3-induced 
45Ca2+ release in the absence of inhibitors (control 
A)  and presence of 10 nM thapsigargin (Q)) or 100 
gM vanadate (O). IP3-induced Ca2+ release was cal- 
culated from the difference between mean 45Ca2+ 
uptake at steady state before addition of IP 3 (col- 
lected in 1 min intervals at 27-30 min after addition 
of ATP) and mean 45Ca2+ content 2-6 rain (five 
values determined in l-rain intervals) following ad- 
dition of IP 3. Points are mean values + SEM from 3-5 
and without SEM from two separate experiments. # P  
< 0.001, w < 0.025, *P < 0.05 using students t-test 
for paired comparison of controls versus thapsigar- 
gin or of controls versus vanadate at the same IP 3- 
concentration. 

IP3-releasable Ca 2+ and that =20% of Ca 2+ uptake either 
remains in the IP3-sensitive Ca 2+ pools or belongs to 
IP3-insensitive Ca 2+ uptake, part of which could be rep- 
resented by plasma membranes [1, 7]. 

45Ca2+ UPTAKE INTO PLASMA MEMBRANE VESICLES 

As shown in Fig. 2A and B, -~15% of Ca 2+ uptake is not 
inhibitable by thapsigargin even at the high concentra- 
tion of 100 riM. It can be inhibited, however, by 100 gM 
vanadate (see Fig. 2A, C). The Ca 2§ which had been 
taken up in the presence of a high thapsigargin concen- 
tration (100 riM) can be released by the Ca 2+ ionophore 
A23187, but not by IP 3 (not shown). It is therefore likely 
that this small part of Ca 2+ uptake is due to contaminat- 
ing plasma membrane vesicles. Ca 2+ uptake into puri- 
fied "plasma membrane" vesicles is shown in Fig. 5A. 
Neither IP 3 nor TG have any effect on Ca 2+ uptake into 
the "plasma membrane" fraction. However, vanadate is 
effective. As can be seen from Fig. 5A, 100 gM vanadate 
inhibits Ca 2§ uptake by more than 80% indicating a 
higher vanadate sensitivity of Ca 2+ uptake into plasma 
membrane vesicles than of microsomal Ca > uptake (Ta- 
ble). Replot of the data demonstrates a shift of the Ca 2+ 
uptake curve to lower vanadate concentrations for puri- 
fied "plasma membranes" as compared to microsomes 
containing plasma membranes (Fig. 5B). When plasma 
membranes are removed from the "fluffy layer" frac- 
tion, we observe stronger inhibition of Ca 2+ uptake at the 
same TG concentration as compared to Ca 2+ uptake into 
"fluffy layer" vesicles containing plasma membranes 
(Fig. 5C). In the presence of 30 nM of TG, the TG- 
insensitive component of 45Ca2+ uptake into microsomes 
containing plasma membranes is significantly reduced 

from 14 + 0.6% (n = 3) to 6.9 + 1.2% (n -- 3, P < 0.01) 
in microsomes without plasma membranes (see Fig. 5C). 
These results indicate that at least part of the TG- 
insensitive but vanadate-sensitive Ca 2§ uptake into mi- 
crosomal vesicles of the "fluffy layer" is due to Ca 2§ 
uptake into plasma membrane vesicles. 

C a  2+ POOLS WITH DIFFERENT THAPSIGARGIN- AND 

VANADATE SENSITIVITIES HAVE DIFFERENT IP3-sENSITIVITIES 

In order to characterize further Ca > uptake into Ca 2+ 
pools with different thapsigargin- and vanadate sensitiv- 
ities, IP3-induced 45Ca 2+ release was measured from 
membrane vesicles ("fluffy layer")  at different IP 3- 
concentrations in the absence or presence of thapsigargin 
(10 riM) or of vanadate (100 gM). When maximal IP 3- 
induced 45Ca2+ release is set to 100% for each condition 
tested (3.7 + 0.9 nmol/mg protein for controls, 3.2 _+ 1 
nmol/mg protein in the presence of thapsigargin and 0.6 
_+ 0.1 nmol/mg protein in the presence of vanadate, n = 
3), apparent K m values for IP3-induced 45Ca2+ release are 
estimated to 0.6 gM for control, to 0.08 gM in the pres- 
ence of thapsigargin and to 2.1 pM in the presence of 
vanadate (Fig. 6). 

Discussion 

Our previous studies on isolated pancreatic permeabi- 
lized acinar cells have shown the presence of IP 3- 
sensitive and IP3-insensitive Ca 2§ pools [9, 25]. We 
have now further characterized IP3-sensitive Ca 2§ pools 
in a microsomal fraction ("fluffy layer" of an 11,000 • 
g pellet) which has been previously shown to contain the 
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Fig. 7. Model for Ca > pools in pancreatic membrane vesicles with different sensitivities to thapsigargin, vanadate and IP 3. For further explanations 
see text. 

highest enrichment in IP3-induced Ca 2§ release [20]. In 
addition to vanadate, thapsigargin, an inhibitor of Ca 2§ 
uptake into IP3-sensitive Ca 2§ pools [22, 24] and of Ca 2+ 
(Mg 2§ ATPases in different cell types [19] has been 
used. The main finding of this study provides evidence 
for two different Ca 2§ pools characterized by different 
sensitivities to the inhibitors of Ca 2+ uptake, vanadate 
and thapsigargin, and different sensitivities of Ca 2+ re- 
lease to IP 3. 

Two DIFFERENT IP3-SENSITIVE C a  2+ POOLS WITH 

DIFFERENT C a  2+ UPTAKE AND C a  2+ RELEASE MECHANISMS 

As shown in Fig. 4, there is a linear relationship between 
Ca 2§ uptake and IP3-induced Ca 2§ release, whether or not 
Ca 2§ uptake is inhibited by thapsigargin or vanadate. 
This indicates that the Ca 2§ that has been taken up into 
all IP3-sensitive Ca 2+ pools is released by IP 3 at the 
maximally effective concentration of 5 pM [21]. Since 
separation of microsomal membranes into different frac- 
tions representing distinct Ca 2§ pools with different Ca 2§ 
pumps could not be achieved, K i values for Ca 2§ uptake 
and Ca 2§ release are only rough estimates that charac- 
terize these Ca 2§ pools functionally. Emphasis is put 
more on evidence for differences in Ca 2+ uptake than on 
correct determination of apparent I~ values. Further- 
more, we have considered the possibility that the two 
distinct Ca 2§ uptake mechanisms are located in separate 
Ca 2+ pools with different sensitivities to IP 3. Figure 6 

shows that in the presence of 10 riM thapsigargin, the 
remaining Ca z+ release is highly IP3-sensitive with an 
apparent K m value for IP 3 of 0.08 ~tM as compared to the 
control apparent K m value of 0.6 gM. However, if the 
Ca 2+ pool with high IP3-sensitivity is blocked by vana- 
date (100 p.M), Ca 2§ release with low sensitivity to IP 3 is 
still present (K m for IP 3 2.1 gM). 

These results are interesting with respect to the re- 
cent observations that following hormonal stimulation of 
pancreatic acinar cells, initial Ca 2+ release occurs at the 
luminal cell pole, which is followed by subsequent Ca 2§ 
release from basal cell sites [14]. Thorn et al. have pro- 
vided evidence for functional IP3-receptors with high 
affinity to IP 3 in the secretory pole region and IP 3- 
receptors with a lower IP3-affinity in the basal pole re- 
gion [26]. The type 3 IP 3 receptor has been localized to 
the apex of pancreatic acinar cells by immunocytochem- 
ical studies, whereas the distribution of other IP 3- 
receptor subtypes in pancreas has not been established 
[ 18]. Figures 7 and 8 show models that combine recent 
findings [14, 18, 26] with our present data. We assume 
two IP3-sensitive Ca 2+ pools: a larger Ca 2+ pool I (=40-- 
50% of total Ca 2§ uptake) located at the basolateral cell 
side contains a Ca 2§ pump with high sensitivity to thap- 
sigargin (apparent K i = 3--4 nM), and low sensitivity to 
vanadate (apparent K i = 200-300 ~tM). The Ca 2+ release 
mechanism of this Ca 2§ pool has a low sensitivity to IP 3 
(apparent K m = 2.1 ~tM). A smaller IP3-sensitive Ca 2§ 
pool II (30--40% of total Ca 2§ uptake) is located at the 
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Fig. 8. Speculative model for apically and basolaterally located Ca 2+ 
pools with different Ca 2+ uptake and Ca 2§ release mechanisms which 
combines recent findings with the present data. The apically located 
Ca 2+ pool has a Ca 2+ pump with a high vanadate and a low thapsigargin 
sensitivity and a Ca 2+ release mechanism with a high sensitivity to IP 3. 
The basolaterally located Ca 2§ pool has a Ca 2+ pump with a high 
thapsigargin and low vanadate sensitivity and a low sensitivity to IP 3. 
For further details see text. 

apical cell side. It has a Ca 2+ pump with opposite sen- 
sitivities to inhibitors, i.e., high sensitivity to vanadate 
(apparent K i = 10-20 p,M) and low sensitivity to thapsi- 
gargin (apparent K i = 11-12 riM). The Ca 2§ release 
mechanism of  the Ca 2§ pool II has a high sensitivity to 
IP 3 (apparent Km = 0.08 p-M). 

Is Ca 2+ UPTAKE INTO Two DIFFERENT Ca 2+ POOLS 
BROUGHT ABOUT BY DIFFERENT Ca 2+ ATPASES. 9 

We do not have yet any evidence for the types of  Ca 2+ 
ATPases, which could underly these Ca 2§ uptake mech- 
anisms. The half  maximal  inhibitory concentrations of  
vanadate for Ca 2§ uptake are similar to those determined 
for sarcoendoplasmic reticulum Ca 2+ ATPases SERCA 2 
and SERCA 3 [15, 16, 27]. Thapsigargin specificity has 
been tested on all of  the known intracellular-type cal- 
cium pumps of  the sarcoplasmic and endoplasmic retic- 
ulum Ca 2§ ATPase family (SERCA) following expres- 
sion of  full-length cDNA clones encoding SERCA 1, 
SERCA 2a, SERCA 2b and SERCA 3 enzymes in COS 
cells [16]. Thapsigargin inhibited all of  the SERCA 
isozymes with equal potency. Complete inhibition was 
obtained at 25 riM. In the studies by Lytton et al. [16] and 
Thastrup et al. [24], high concentrations of  thapsigargin 
(up to 100 riM) were used without paying attention to 
smaller  thapsigargin concentrations in the nanomolar  
range up to 10 riM. However,  a study on Ca 2§ stores of  

endoplasmic reticulum from rat brain, as in the present 
study, revealed maximal inhibitory concentrations of  10 
nM with an IC5o value of  2 nM TG [28]. As shown in Fig. 
2,4 an apparent K i value of  = 3 -4  nM can be evaluated 
from the first phase of  Ca 2+ uptake. This K i value is 
further substantiated, when Ca 2+ uptake is measured in 
the presence of  100 p-M of  vanadate which abolishes the 
second phase of  TG-induced inhibition of  Ca 2+ uptake 
and leaves a Ca 2+ uptake curve identical to the first phase 
of  Ca 2+ uptake. Recently, two isoforms of  the SERCA- 
2b type Ca 2+, (Mge+)-ATPase have been described in 
pancreatic endoplasmic reticulum [10]. However,  no at- 
tempts have been made to determine whether they pos- 
sess different functional properties and cellular localiza- 
tion [10]. Northern blott ing of  pancreatic tissue has 
demonstrated mRNA for SERCA types 2b and 3 [6]. 
It therefore appears l ikely that these Ca 2+ ATPases are 
involved in Ca 2+ uptake into IP3-sensitive Ca 2+ pools. 

In addition to the two Ca 2+ uptake mechanisms in 
intracellular microsomal membranes,  we found a third 
Ca 2+ pump with high sensitivity to vanadate (K i -- 10 p-M) 
and no sensitivity to thapsigargin and IP 3. This pump is 
most l ikely located in the plasma membrane. Half  max- 
imal inhibitory concentration of  vanadate for Ca 2+ up- 
take at =10 p-M ( s ee  Fig. 5B) has been described for 
plasma membrane Ca 2+ ATPases of  hepatocytes [1], car- 
diac sarcolemma and erythrocyte membrane [7]. Further 
studies will have to determine whether or not both Ca 2§ 
uptake mechanisms in intracellular membranes as de- 
scribed in the present study can be assigned to different 
types of  SERCA-type Ca 2+ ATPases located in Ca 2§ 
pools with different sensitivities to IP 3 and distinct loca- 
tions in pancreatic acinar ceils. 
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